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The Effect of Anisotropic Surface Energy

on the Rayleigh Instability

By K. F. Gurski and G. B. McFadden

National Institute of Standards and Technology, Gaithersburg, MD 20899-8910,

USA

We determine the linear stability of a rod or wire subject to capillary forces

arising from an anisotropic surface energy. The rod is assumed to be smooth with

an uniform cross section given by a 2-D equilibrium shape. The stability analysis

is based on computing the sign of the second variation of the total energy, which

is examined by solving an associated eigenvalue problem. The eigenproblem is a

coupled pair of second-order ordinary differential equations with periodic coeffi-

cients that depend on the second derivatives of the surface energy with respect

to orientation variables. We apply the analysis to examples with uniaxial or cu-

bic anisotropy, which illustrate that anisotropic surface energy plays a significant

role in establishing the stability of the rod. Both the magnitude and sign of the

anisotropy determine whether the contribution stabilizes or destabilizes the sys-

tem relative to the case of isotropic surface energy, which reproduces the classical

Rayleigh instability.

Keywords: Rayleigh instability, anisotropic surface energy, quantum wires,

nanorods, Cahn-Hoffman xi-vector

1. Introduction

As shown by Plateau (1873) in his classical studies of capillary instabilities, a cylin-

drical interface with an isotropic surface free energy is unstable to volume-preserving

axisymmetric perturbations whose wavelength exceeds the circumference of the

cylinder. Such perturbations lower the total energy of the cylinder, leading to the

breakup of the cylinder into a series of drops or bubbles. The stability of a liquid

jet was subsequently studied by Lord Rayleigh (1878), who argued that the length

scale of the instability is determined by the perturbations having the fastest tem-

poral growth rate of instability; the phenomenon has generally come to be known

as the Rayleigh instability.

The Rayleigh instability arises in a number of diverse applications, such as ink

jet printing (Pimbley k Lee 1977), two-phase flow (Taylor 1934; Tomotika 1936),

liquid bridges (Coriell et al. 1977; Zhang k Alexander 1990; Slobozhanin et al.

1997; Lowry k Steen 1997), quantum wires (Fukunaga et al. 1998; Kassubek et al.

2001), fiber spinning (Hohman et al. 2001), liquid crystals (Forest k Wang 1998),

and polymer blends (Migler 2001). In solidification, a cylindrical interface is subject

to capillary instabilities (Marinis k Sekerka 1979; Brattkus 1989; McFadden et al.

1993; Majumdar k Chattopadhyay 1996). A crystal-melt interface in an isothermal

system is subject to a Rayleigh instability through the Gibbs-Thomson equation,
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but the system can be stabilized by radial temperature gradients normal to the

interface (McFadden et al. 1993).

Because of the underlying crystal lattice, the surface energy of a liquid-solid

or vapor-solid interface is generally anisotropic and depends on the orientation of

the local normal vector at each point of the interface (Herring 1953; Mullins 1963;

Rottman & Wortis 1984). The surface energy of a solid-solid interface between two
crystals is also anisotropic in general, with the additional complication that the

surface energy also depends on the direction cosines that characterize the relative

orientations of the two crystals (Sutton &; Balluffi 1995). For the case that the two
crystals share a common lattice orientation, as in an anti-phase boundary, the solid-

solid surface energy can also be assumed to depend on the local normal vector. In

this paper we will consider a model of this type in which the surface energy depends
only on the local normal vector.

An observation that partially motivates this work is the apparent stability

of elongated nanowires that are grown in a bridge configuration (e.g., Kondo &:

Takayanagi 1997) or epitaxially on a heterogeneous substrate (e.g., Chen et al.

2000, 2001). The nanowires (alternatively called nanorods or quantum wires) are

“one-dimensional” crystals with dimensions as small as one nanometer high, a few

nanometers wide, and can be as long as a micron. There are long-standing studies on
possible experimental techniques to grow these nanowires (Sundaram et al. 1991),

and the stability of these nanowires is beginning to come under study. Continuum
modeling of the nanowires provides some guidance as to their expected stability,

though the strict applicability of continuum models is limited if the length scales

approach atomic dimensions. There are a number of possible mechanisms that could

stabilize the wire, including elastic interactions between the wire and the substrate

(Chen et al. 2000), quantum electronic shell effects (Kassubek et al. 2001), and
surface energy anisotropy (Loretto et al. 1996).

A linear stability analysis suggests that isolated quantum wires with an isotropic

surface energy would tend to bead up rather than persist as wires. Numerous studies

of similar structures have shown that the Rayleigh instability leads preferentially to

the formation of droplets or particles (Fukunaga et al. 1998; Forest & Wang 1998;

Majumdar & Chattopadhyay 1996). Recently Kassubek et al. (2001) performed

a linear stability analysis of nanowires with a free-electron model using quantum
chaos techniques. They found that the instability of a long wire under isotropic

surface tension can be completely suppressed by electronic shell effects.

To address the effects of surface tension anisotropy on the Rayleigh instability,

we compute the second variation of the surface free energy of an isolated wire or

rod whose cross section is smooth and given by the associated two-dimensional

equilibrium shape. Previously Cahn (1979) studied the stability of rods with cir-

cular cross-sections that are subject to axisymmetric perturbations; the underlying

surface free energy is assumed to have transverse isotropy, which results in closed-

form solutions to the stability problem. In our study, we consider general surface

free energies and derive an associated eigenproblem whose eigenvalues govern the

stability of the rod. The eigenproblem is described by a pair of coupled second-

order ordinary differential equations with periodic coefficients, which generally lack

closed-form solutions. We apply the analysis to a number of examples, including

the case of a cubic material, and compute the stability of the rod to general per-

turbations when the axis of the rod is in high symmetry orientations such as [001],
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[Oil], and [111]- For small levels of anisotropy, the stability can be computed ap-

proximately via perturbation theory. For larger amplitudes of anisotropy, we have

computed solutions numerically. We find that surface tension anisotropy can either

promote or suppress the Rayleigh instability, depending on the orientation of the

wire and the magnitude and sign of the anisotropy.

2. Model

We compute the stability of an infinite rod extending in the z direction of a carte-

sian coordinate system
(
x,y,z ). The cross section of the rod is assumed to be

uniform in z and defined by a two-dimensional (2-D) equilibrium shape which is

determined by surface energy considerations alone. We assume that the surface en-

ergy is anisotropic, depending on the orientation of the local normal to the surface,

but restrict our attention to differentiable surface energies with anisotropies that

are mild enough that the surface of the rod is smooth and does not exhibit any

missing orientations.

(a) 2-D Cross Section

Under these assumptions the cross section of the rod in the (x , y) plane can then

be written in the parametric form (see, e.g., Voorhees et al. 1984)

X(<p) = — [7(0) cos 0- 70(0) sin 0] ,
F(0) = — [7(0) sin 0 + 70 (0) cos0]

, (2.1)
7o 7o

for 0 < 0 < 2ir, where 7(0) is the 2-D surface energy, £ is a characteristic length

scale, and 70 is a characteristic surface energy. Here derivatives are denoted by

subscripts, with 70 = d^/d4>. The relation of the 2-D surface energy 7(0) to the

more general 3-D surface energy that characterizes a given material will be discussed

shortly.

The curve defined by eq. (2.1) has the outward normal r(0) = (cos 0, sin 0), so

the shape is parameterized in terms of its normal angle 0; see figure 5. The angle 0
is also the appropriate argument for the surface energy 7 = 7(0). In addition, the

curvature of the shape, 1C = (X^ - Y^X^)/[Xl + F^]3/2
,
is found to satisfy a

version of the anisotropic Gibbs-Thomson equation,

[7 + 7 (2.2)

A 2-D equilibrium shape is therefore characterized by a constant weighted mean
curvature [7 -I- 700] K (Taylor 1992). For an isotropic surface energy 7(0) = 70, the

2-D equilibrium shape (2.1) reduces to a circle of radius I. Missing orientations

occur if 7 -I- 700 < 0 (Voorhees et al. 1984); we will assume 7 + 700 > 0.

(
b

)
Shape Perturbation

We express the surface of the rod in the dimensionless form

x (o)
(0, z) = 7(0) r(0) + 70(0)0(0) + zz, (2.3)

for 0 < 0 < 2tt and —00 < z < 00, where f(0) = cos0i + sin 0y, 0(0) = — sin0£ +
cos 0 y ,

and z are unit vectors in a cylindrical coordinate system. Here the units of
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length and energy are based on t and 70, respectively; appropriate choices for i and

70 will be described in the examples discussed in §3.

We determine the stability of the rod by computing the total energy of a volume-

preserving perturbation to the rod having the general form

J?(0,z) = J?<
o)
(0,z) + z)r((j>) + j

h

2f(d>) + 0(e3
), (2.4)

where e is a small parameter, h(4>, z
)

is the height of the perturbation along the

normal r to the unperturbed shape, and the constant /i2 is a second-order shape

correction introduced to satisfy the volume constraint at 0(e2 ). The geometry of

the perturbed rod is determined by the two tangent vectors X# and Xz ,
and their

cross product, P = X# x Xz ,
which is normal to the interface. The area element on

the interface is given by dA = \X,p x Xz
\

d(j>dz = |P| d<fidz. Evaluating the tangent

vectors by using eq. (2.4) and talcing their cross product, we find that the interfane

normal has the expansion

P(4>,z) = P (
°\<t>,z) + eP(1)

(4>,z) + j

P

(2)
(t,z ) + 0(e3

), (2.5)

where

pm = (7 + 7w) (2.6)

pm - hr - - (7 + 700) hz z, (2.7)

pm = h2 f - 2hhz z. (2.8)

The stability of the rod is determined by expanding the total energy through

0(e2
)
for |e| 1, and examining whether the shape perturbation raises or lowers

the energy of the rod. Since the rod is assumed to be infinite in the z-direction, an

analysis in terms of Fourier components allows us to consider shape perturbations

that are periodic in z.

(c) Volume Constraint

The shape perturbation is required to preserve the rod’s volume over a given

length, which we may take to be a period A of the perturbation. The volume is

given by

v
=\fJ

yV(x,»,0)dV = i f r P(t,z)-[X(4,z)-zz] d<Ad*. (2.9)

Expanding in e, we find that

V = V(0) + eF (1) + ^F (2) + 0(e3 ), (2.10)

where

A r
2*

V
" (° ) =

2 J
7(7 + 7^) (2 . 11 )

rA r2n

V (1) = (7 + %<t>) h(<t>, z) d^dz, (2.12)

Jo Jo
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A periodic perturbation fi(0, z) with mean zero makes F* 1
* =0, and an appropriate

choice of /i2 then enforces = 0, viz .

,

r2n r2ir

Xh2 / 7(0) d0 = - / / [h(<f>, z)]
2
d<t>dz. (2.14)

Jo Jo Jo

(
d

)
3-D Surface Energy

An arbitrary perturbation h(0, z )
results in orientations on the perturbed shape

that do not occur on the original rod, so that knowledge of the 2-D surface energy

7(0) is not enough to determine the stability of the rod: we need to consider the 3-D

surface energy for general orientations. We will assume the rod axis is aligned in an

arbitrary crystallographic direction. The surface energy of the perturbed rod will be

expressed in terms of the interface normal vector written in a spherical coordinate

system (p, 0, 0) in which z is the polar axis, p = \J

x

1 + y
1 + z2 is the 3-D radius,

6 is the polar angle, and 0 is the azimuthal angle; note that 0 is common to both

the cylindrical and spherical coordinate systems (see figure 2). A general interface

normal then has components nx = cos 0 sin#, ny = sin0 sin#, and nz = cos#,

and the 3-D surface energy can be written as 7 = 7(0, #). The normal to the

unperturbed rod lies in the plane # = 7t/2, or nz = 0. In this plane the spherical

and cylindrical coordinate systems are related by p = r and # = —z, and the 2-D

surface energy is given by 7(0) = 7(0,7t/2).

(i) Cahn-Hoffman £- Vector

The calculations are simplified considerably by introducing the ^-vector formal-

ism developed by Cahn k Hoffmann (1972, 1974). The 3-D ^-vector is given by

(Voorhees et al. 1984)

|(0, #) = V [p7(0, #)] =7P+ W + 70#. (2.15)

The dimensionless 3-D equilibrium shape is given by f(0, #) for 0 < 0 < 2n and

0 < # < 7r, and its normal is p(0, #).

In the plane # = 7t/ 2, the ^-vector traces out the curve

f(0,7r/2) = jf + 7^,0 - 702. (2.16)

If 70(0, 7r/2) = 0 for 0 < 0 < 27r, this curve lies in the plane z = 0 and represents

a 2-D equilibrium shape corresponding to the 2-D surface energy 7(0) = 7 (0, 7r/2).

If 70(0, 7t/2) # 0, this curve is not confined to the plane z = 0. However, the cross

section of the rod that is formed by projecting this curve to the plane z — 0 is the

2-D equilibrium shape corresponding to 7(0). The rods that we consider here axe

related to the 3-D surface energy 7(0, #) in this manner.

More generally, we can define the ^-vector on an arbitrary surface X(u,v) with

a normal vector field P = Xu x A'„ as follows. We first extend the definition of

7(0, #) by writing

T(P) = |P|7(0,$), (2-17)
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where

G = tan- 1

(
y
/P* + P*/Pt ), * = tan

- 1 (Py/Px ), (2.18)

are the corresponding spherical angles based on the normal vector P. Since we have

7 (0 , 4>) dA = 7 (0 ,
4>)|P| dudv = T(P) du dv, (2.19)

the total energy of the shape has the simple form

E = du du. (2.20)

Variations in E due to changes in the surface shape then lead directly to the Cahn-

Hoffman ^-vector, with components

tj(P) =
dT(P)

dPj ‘
(
2 .21

)

The 3-D weighted mean curvature of the surface associated with 7($, 0 )
is then

given by the surface divergence of the £-vector, Vs - £ (Taylor 1992).

For our system, the surface and normal vectors are given by eq. (2.4) and

eq. (2.5), respectively, and the energy, E
,
of the shape over a single period is

E = T(P) d(j> dz. (2 .22
)

By using the definition (2.21) and the relations (2.5), we find the expansion

r(P) = r(P(0)
) + e£w • p(1)

+ j [^
0)

• P(2) + ?i) -P{1)

]

+0(e3
), (2.23)

where we have

F(p(°)) = 7(7 + 700 ), (2.24)

|to) = 7r + 700 ~ 7oz, (2.25)

? l) = \lio<ph'z ^0 ] 0 +
79<ph(p

- (7 + 7ee)hz (2.26)
.(7 + 700 )

These expressions result from calculations which are outlined in Appendix I. In

these expressions 7 and its derivatives are evaluated for the unperturbed rod with

6 = tt/2.

The formal expansion of the energy in powers of e then yields

E = £(0) + e£(1) + ^£(2) + 0(e3 ), (2.27)
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where

£(0)

/>2tt

= A
/ 7 (7 + 700) d0,
J0

(2.28)

rA f2lT

£ (1) = (7 + 700)hd0dz, (2.29)
Jo Jo
rX r2n

E(2) =
J J |

(7 + 700) (7 + 7<w>) ^2 ~ 2'ie<j>hzh <t>
+ + (2.30)

2yohh z + 7/12} d^dz.

In these expressions, the surface energy y(<j>, 9) and its derivatives axe all evaluated

at 9 = 7t/2, so that the coefficients of h((p, z ) and its derivatives are all independent

of z. For a perturbation that is periodic in z, the terms proportional to hz and hhz

then integrate to zero. The first variation therefore vanishes for perturbations

with = 0, and the rod is in equilibrium. By substituting the value of /12 from

eq. (2.14), we find that the second variation is given by

rX r2n

E(2) = / / {hi + (7 + 700) (7 + y<t>4>)
h2
z - h2 - 27e0 /i0 /i2 } d<f>dz. (2.31)

Jo Jo

This expression generalizes the axisymmetric formulation of Cahn (1979), in

which both the surface energy and the shape perturbation axe independent of 0.

(e) Eigenproblem

The sign of E (2
^ can be determined by diagonalizing the associated quadratic

form via normal modes. We first define the (indefinite) inner product of two func-

tions and g(<f>,z) to be

rX r2l

T

(/» 9) = {f<t>9<t> + (7 + lee) (7 + 7<t><t>) fz9z ~ fg-
J 0 Jo

le<t>(fz9<t> + f<t>9z)} d<f>dz,

so that E

W

= (h, h). We then integrate by parts to obtain

(2.32)

(/

rX p2ir

>9) = -]
Jo Jo

f Lgd<j)dz,

where the boundary terms vanish by periodicity, and

Lg = + 9 + (7 + 700X7 + 7ee)9zz — lo<t>9z<t>
—

[7e</>9z\<t>-

(2.33)

(2.34)

Since L is symmetric, it has a complete set of orthogonal eigenfunctions hn (<f>,z)

with real eigenvalues pn . Expanding the perturbation as

h{<t>,z) = Y2 anhn(<t>,z) (2.35)

then leads to

rX r2n

E ^ ^ =
(^ ' ^ ^ a.nhn ) = ^ ^ ®m On / I hm Lhn d<f> dz

m n m,n “'° *'°
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h2n d<j>dz. (2.36)

If nn < 0 for all n, then the energy increases for any perturbation and the rod is

stable. An unstable mode corresponds to a positive value for pn .

Since the eigenproblem

Lhn — nnhn (2.37)

has coefficients that are independent of z, we may separate variables by writing

hn (0, z) = Hn (4>) sin kz + Gn (0) cos kz, (2.38)

where k = 27t/

A

is the axial wavenumber, leading to the coupled equations

cPH dG d

d(j£'
+ [1 ~ (7 + + 7ee)]Hn - ^700-^ - k '

d
^Siect>Gn] = VnHn, (40)

d(p
2 + [1 ~ ^

2
(7 + 7 + 7oo)]Gn + + k

d0
['ye<t>Hn] = VnGn -

(
41 )

If 7e<t>
= 0 for 0 <

<f>
< 2n the equations decouple.

A critical wavenumber k = kc corresponds to a marginally-stable mode with

Hn = 0. Such a mode can also be interpreted as representing the bifurcation of

another steady-state solution from the infinite rod. In Appendix II we show that

Lh is the linearization of the weighted mean curvature Vs £, so that our energy

analysis is equivalent to a bifurcation analysis of the governing equation Vs • £ =
constant.

3. Examples

The linear stability problem has closed form solutions for special surface energies

and rod orientations. More generally, the eigenproblem has variable coefficients,

but easily can be solved numerically for general energies y(6, 0) as long as there

axe no missing orientations. For small anisotropies, the eigenproblem can be solved

approximately by an asymptotic expansion. In this section we discuss a number of

examples to illustrate the stability results.

(a) Isotropic Surface Energy

In the isotropic case, the dimensionless problem is reduced to 7(0,0) = 1, and

the unperturbed rod is a cylinder of radius unity. The eigenproblem has constant

coefficients and decouples; the eigenfunctions Hn = cos n0 or sin n0 correspond to

eigenvalues

pn — —

n

2 + 1 - k
2

. (3.1)

The eigenmodes with n > 1 axe all stable, and the axisymmetric mode n = 0

is stable for k > 1 or A < 27t. We thus recover Plateau’s classical result that
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axisymmetric perturbations with wavelengths longer than the circumference of the

rod axe unstable.

We emphasize that the eigenvalues pn do not correspond to temporal growth

rates arising in a dynamical theory of stability, as in, e.g., Rayleigh’s treatment

of liquid jets. Temporal growth rates of cylindrical instabilities are often found to

be neutrally stable for zero wavenumber [see Chandrasekhar (1961)], whereas our

eigenvalues tend to non-zero limits for small wavenumbers.

(
b ) Ellipsoidal Surface Energy

We next consider a surface energy T of the form

F(-P) = ^/alP?+alPi+alP?, (3.2)

in the notation of eq. (2.17). The components of the ^-vector then satisfy

(3.3)

so the corresponding equilibrium shape is ellipsoidal with semimajor axes in the

ratio clx •o.y .clz •

We take ax = ay = 1, resulting in the axisymmetric equilibrium shape x2 + y
2 +

z2 /a2 = 1 . For az » 1
,
the shape approximates the unit cylinder x2 + y

2 = 1 near

z = 0, and, ignoring the effects of surface energy anisotropy, one might expect to

recover a Rayleigh instability for wavenumbers k < 1. However, equilibrium shapes

represent minimum energy configurations and are stable (Johnson & Chakerian

1965), which must be reflected in the stability results of the infinite cylinder.

The surface energy 7 for ax = ay = 1 is given by 7 (4>, 0) = \J
sin

2
0 + a2 cos2 6,

and in the plane 6 = zr/2 we have 7 = 1, 7^ = 0, 7e<t>
— 0, and 7eg = (a

2 — 1). The
eigenproblem (2.39) decouples, and the eigenvalues are given by

Pn = -n2 + (1 - k2
a
2
z ), (3.4)

with Hn (<t>)
= cos n<f) or sin n(f> [c.f. Calm (1979)]. For az 1 ,

there is a long-

wavelength axisymmetric instability with kc = 1/az . The unstable perturbations

have wavelengths A > 7r(2a2 ) that axe longer than the length of the corresponding

equilibrium shape, which is consistent with the underlying stability of the equi-

librium shape. For o2 2> 1, the surface energy for interface orientations with unit

normal (n2 ,ny ,n2 ) is relatively low for small values of n 2 and high near n2 = 1.

This has the dual effect of producing equilibrium shapes that axe highly elongated

in the z-direction, and stabilizing the infinite cylinder to all but long-wavelength

axial perturbations.

(c) Cubic Surface Energy

A simple model of the surface energy anisotropy for a cubic material is given by

the dimensional expression (McFadden et al. 1988)

7«,nj
/
,n'2 ) = 70 {1 + 4e4 ([<]

4 + [n'
y ]

A + [<]
4
)} (3.5)
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where we employ a primed coordinate system that is attached to the crystal axes.

We will consider the high symmetry orientations [001], a four-fold axis; [Oil], a two-

fold axis; and [111], a three-fold axis. We will use appropriate preliminary rotations

of the crystal axes in each case to bring these axes into alignment with the 2-axis

of the rod, which will be fixed in the unprimed coordinate system.

In figure 3 we show examples of 3-D equilibrium shapes corresponding to the

surface energy given in eq. (3.5). The shapes axe smooth for —1/18 < 64 < 1/12.

For 64 < 0 the shapes resemble rounded cubes, with [110] edges first forming at

t4 = —1/18 ~ —0.0556. As €4 decreases below —1/18, the edges extend toward the

[111] directions, merging to form a corner for €4 = —5/68 « —0.07735. For e4 > 0

the shapes are octahedral, with [100] corners first forming at €4 = 1/12 « 0.0833.

For numerical determination of the eigenvalues we used two different numerical

methods. The first method used the Sturm-Liouville solver, SLEIGN2 (Bailey et

al. 2001). The second method uses a pseudospectral discretization (Voigt et al.

1984) of the equations and then computes the eigenvalues of the resulting matrix

by using the EISPACK solver RS (Smith et al. 1976) for real symmetric matrices.

Both methods gave identical numerical results.

(i) [001] Orientation

If the axis of the rod is aligned with the [001] orientation of the crystal, then no

preliminary rotation of the crystal is required, and the dimensionless surface energy

resulting from eq. (3.5) is given by (Kessler & Levine 1987,1988; McFadden et al.

2000)

7(0, 6
) = 1 + 64 [4 cos

4
0 + sin

4
0(3 + cos 4<£)] . (3.6)

In the plane 8 = tt/ 2, we then have 7 = 0, and

7 = (1 -I- 3e4) + €4 cos 40, (3.7)

(7 + l<t><t>) (7 + lee

)

= (l - 6e4 - -e\[ - (18e4 - 12664) cos4</> + —e\ cos 80. (3.8)

The rod is also smooth for -1/18 < 64 < 1/12, and missing orientations occur for

e4 < -1/18 and e4 > 1/12. Cross sections of the unperturbed rod over the range

— 1/18 < €4 < 1/12 are shown in figure 4a.

Since the term 704, vanishes, eq. (2.39) decouples and the eigenfunctions satisfy

the equation

H'n(<t>) + (1 - k? [l + e4Ai(0) + t\A2 (<t>)]) Hn (<j>) = nnHn (<f>), (3.9)

where

A\(4>) = -6[1 + 3cos40], A2 (4>) = “[1 - 28cos4</> - 5cos8<£]. (3.10)

Figure 4b shows the results of a numerical computation of the first three eigen-

values for e4 = 1/12. There is a range 0 < k < kc « 1.5 where the first mode H0 (<t>)

is unstable with hq > 0; this mode corresponds to a continuation in C4 of the n — 0
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axisymmetric mode for the isotropic case. All other modes are found to be stable

for all wavenumbers.

A formal asymptotic expansion for |e4
1

1 can be used to compute an ap-

proximation to the the eigenfunctions and eigenvalues. The solution is given by

expanding Hn ((f)) and pn in terms of e4 as

HM) = +e4/r<
1)
(« +!«<*)(« + |4*>W) + 0(«1) (3.11)

to = /4
,, +«A,, + f/*?

) + fA*
)

+0(<l). (3.12)

where and tin' correspond to the isotropic case with C4 = 0. We restrict

attention to the most dangerous mode, corresponding to n = 0. The expansion

gives

H0 {<1>)
= 1 + |Ar

2
e4 cos40 ^1 + ^e4 {(9fc

2 - 20) cos40 - 224}^j + 0(e3
4 ), (3.13)

po = [1- k
2

]
+ 6fc

2
e4 + \k?(4 + 9A;

2
)e4 - + 0(e4 ). (3.14)

o 4

As can be seen in figure 4a, the dimensionless area of the unperturbed rod’s

cross section varies with e4 ;
it is given by

= 7(7 + 700)^ = 7T (l + 6e4 + = ttR
2

, (3.15)

where Re = y
/T+6e4 + 3eJ/2 is the effective radius of the cross section. To elimi-

nate this change in length scale with e4 ,
we set k = kRe ,

which is the dimensionless

axial wavenumber based on the effective radius of the cross section.

In figure 5a we show the most unstable mode over the range — 1/18 < e4 < 1/12

as a function of k. The rod is stabilized for e4 < 0 and destabilized for e4 > 0. The
square of the corresponding critical wavenumber kc as a function of e4 is shown as

the solid curve in figure 5b; the wavenumber varies from kc = 0.72639 at e4 = —1/18

to kc = 1.8503 at e4 = 1/12. The dashed curve shows the corresponding result from

the asymptotic expansion for small e4 ,
which takes the form

k2 = 1 + 12e4 + ^pe4 + ^p-e3
4 + 0(e4 ). (3.16)

(ii) [Oil] Orientation

If the axis of the rod is aligned with the [Oil] orientation of the crystal, then

an appropriate rotation of the crystal axes relative to the rod axis is given by

(McFadden et al. 1988)

0
\ /

nx \

1/V2 n„
, (3.17)

1/V2 J \n z J
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as shown in figure 6 .

This rotation gives

7 = 1 + 4e4 ^n4
+ y + y + 3n2n2

^
(3.18)

which reduces to

7=1 + 2e4 (cos
4
0 + 6 cos

2
6 sin

2
9 sin

2
(j) + 2 sin

4
6 cos

4
(j) + sin

4
6 sin

4
<f>) . (3.19)

In the plane 6 = 7r/2
,
we then have 700 = 0, and

(3.20)

The rod is smooth for —5/68 < e4 < 1/12, which is a larger range than the

[001] case. Cross sections of the unperturbed rod are shown in figure 7a. Missing

orientations on the rod occur for e4 < —5/68 and e4 > 1/12.

Over the range e4 = —5/68 ss —0.0735 to e4 = —1/18 ~ —0.0556 the rod is

smooth (7 + 700 > 0), but edges have formed on the 3-D equilibrium shape. In

the variables of eq. (3.19), this edge is a discontinuity in slope in the 0-direction in

the plane 9 = 7r/2, with 7 + 700 < 0 near (j) = ±7r/2. The edges are smooth in 0,

however, until they merge to form the corner seen in the innermost curve in figure

7a for e4 = —5/68.

Since the term 700 vanishes, eq. (2.39) decouples and the eigenfunctions satisfy

the analogous version of eq. (3.9), with the corresponding coefficients A 4 (0) and

A2 {(f>) given by eq. (3.21). We first note that over the range —5/68 < e4 < —1/18,

there is a large-wavenumber instability associated with 7 + 700 < 0. Dispersion

curves for e4 = —0.060 are shown in figure 7. The n = 0 mode has two values of kc

with n = 0, and is increasingly unstable for large wavenumbers with /z « 0.11 A;
2

.

For k » 1 these modes are concentrated near the minima in 7 + 700 near
<t>
= n/2

and 4> = Sir/

2

as shown in figure 8. A WKB analysis suggests a large-wavenumber

dependence of the form n = fc
2
[/z0 + 0(1/k)], where no = -min(7 + 7^^)(7 + 700).

For e4 = —0.06, this gives /zo = 0.1088, in good agreement with the numerical

calculations.

For —1/18 < e4 < 1/12 the results are qualitatively similar to the [001] case;

there is again a single unstable mode with n = 0 corresponding to the continuation

in e4 of the n — 0 axisymmetric mode for the isotropic case. All other modes are

found to be stable for all wavenumbers.

For |e4
|

<& 1 the n = 0 mode is given by

(3.22)
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po = [1 - fc
2

] - yfc2
e4 + y^fc2

(657A:
2 - 668)e

2 +
Cl— A:

4
(324fc

2 - 433)e? + 0(e4
4 ). (3.23)

256

As can be seen in figure 7a the dimensionless area of the unperturbed rod’s cross

section varies with e4 ;
it is given by

1 r
2n / q 21 \

A(<u) =
2 J 7(7 + 70*) d0 = 7T ^1 + -€4 - ^e4

J
= (3-24)

we again rescale by setting k = kRe . In figure 9a we show the most unstable mode
over the range —1/18 < e4 < 1/12 as a function of k. In contrast to the [001] case,

for the [Oil] case the rod is destabilized for e4 < 0 and stabilized for e4 > 0. The
square of the corresponding critical wavenumber kc as a function of e4 is shown as

the solid curve in figure 9b. The curve is double-valued for e4 < —1/18 (c.f. figure

7b) with a limit point at e4 « —0.0638 and nc « 2; only the lower branch is shown.

The dashed curve shows the corresponding result from the asymptotic expansion

for small e4 ,
which takes the form

1 — 3e4 -f
2697 o

128
64

137385 3

256
64 + 0(e4

). (3.25)

(iii) [111] Orientation

If the axis of the rod is aligned with the [111] orientation of the crystal, then

an appropriate rotation of the crystal axes relative to the rod axis is given by

(McFadden et al. 1988)

y/2/y/Z 0 l/>/5 \

=
(
-1/VS l/y/2 l/v/3

-1/VS -l/y/2 1/V5 J

Tlj

(3.26)

as shown in figure 3.

This leads to the form

7 = l + 4e4 f^- + ^ + ^ + n2 n2 +2n2n2 + 2n2n

+ ~^—nlnz — 2y/2" " 2

2 3

nxn
2

y
n z

2„2
Z (3.27)

which reduces to

7 = 1 + 4e4 f
^
cos

4
0 + 2 cos

2 9 sin
2
9 -I-

^
sin

4
9 + yy cos 9 sin

3
9 cos 30

J

. (3.28)

In the plane 9 = 7r/2, we then have

7 = 1 + 2e4 ,
(3.29)
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so that the surface energy is isotropic in this plane, leading to a circular cross

section of radius Re = 1 + 2e4 . (We must have €4 > —1/2 to maintain a positive

surface energy.) In this plane we also have

700 = 8\Z2e4 sin 30, (3.30)

so that eq. (2.39) does not decouple. We also have

7 + 700 = 1 + 10e4, (3.31)

so that (7 + 7</></>)(7 + 700) = (l + 2e4)(l + 10e4
)

is negative for -1/2 < e4 < —1/10.
We have the following system of equations:

d?H HC
+ [1 - k2

(1 + 12e4 + 20e
2
)]
Hn + \sV2kt4 sin(30)^- + (33)

24\/2ke4 cos(3<j>)Gn = nnHn ,

-
72T + [1 - k2

(1 + 12e4 + 20e^)l Gn - 18y/2ke4 sin(30)—f -
cL(p d(p

24y/2ke4 cos(3(l))Hn = nnGn -

For
|

€4
1

<£ 1 we find an approximate solution for n = 0 of the form

/i(0 ,
z) — sin kz

— cos kz

1 - ~^-k
2
el cos(60) + 0 (e4 )

8\/2
ke4 cos(3 <f>) + 0 (e4 )

(34)

(3.35)

Ho = (1 - k2 ) -m2
e4 + 44fc

2
e
2 + 0{e\). (3.36)

Another equivalent solution is given by a translation in z by 7r/ k. A schematic plot

of the perturbed cylinder corresponding to eq. (3.35) is shown in figure 11a. The
perturbed shape lacks any planes of symmetry normal to the 2-axis, and exhibits

the three-fold symmetry in 4> expected for a cylinder in the
[
111

]
direction.

A numerical calculation of the square of the critical wavenumber for the n =
0 mode over the range —1/18 < e4 < 1/12 is shown in figure lib. The rod is

destabilized for e4 < 0 and stabilized for e4 > 0. The rational approximation

2 _ (1 + 2^4 )

2

Kc ~
(1 + 12e4 - 44e2

)

obtained from eq. (3.36) is also shown as a dashed curve in this figure, but the

results are indistinguishable from the numerical results to graphical accuracy. For

anisotropies e4 < —1/18 for which the 3-D equilibrium shape has developed edges,

we find more complicated dispersion relations indicating multiple bifurcations of

several of the eigenmodes.

(3.37)
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4. Discussion

The second variation of the energy of the perturbed rod involves the terms 700 and

(7+ 7<#></>) (7+ 700)- The latter product is evocative of a weighted Gauss curvature, in

the following sense. The first variation of a general anisotropic surface energy leads

to the weighted mean curvature, which can be expressed via the Herring formula

(1951)

(7 + 7fllfll ) , (7 + 70202
) Xs £ (4.1)

Here 1/Rj = *7 are the principal curvatures of a general surface, X (111,112), ex-

pressed in terms of principal coordinates Uj (O’Neill 1966). The angles 8j measure

the local orientation of the surface, and their variation with arclength along u
3

++ — jr-We TV10 unit normal at(*,. satisfies Rodrigue’s formula

For the case of isotropic surface energy, the first and second variations of the

energy involve the usual mean curvature K. = (/ci -I- K2) and Gauss curvature Q —

k\K2- This is illustrated by considering a normal variation x(ui,it2) = X(u\,U2) +
eN(ui ,

u2 ), which has a vector area element given by (O’Neill 1966)

+ elC + e
2
Q] dui du2, (4.2)

which follows from Rodrigue’s formula. Our stability equation, derived by taking

the second variation of the energy for the perturbed rod, involves the product of

the same terms, (7 + 700) and (7 -I- 7ee), that appear in Herring’s formula for the

first variation of the energy, which is suggestive of the appearance of a weighted

Gauss curvature.

We have considered an energy argument to determine the critical wavenumbers

of perturbations that lower the total energy of the rod. This analysis takes into

account only the surface energy of the interface and is not tied to a specific time-

dependent process that would describe the subsequent temporal evolution of the

interface. A time-dependent analysis would require consideration of a specific model

for the dynamics of the process, which we have avoided in our treatment. On the

other hand, such considerations are necessary to determine realistic time-scales for

the evolution that are related to the maximum growth rates predicted by a linear

theory (see, e.g., McFadden et al. 1993; Nichols & Mullins 1965); our treatment

does not provide estimates for growth rates.

The cubic surface energy example leads to a situation in which the surface energy

anisotropy may be high enough that the 3-D equilibrium is missing orientations,

while the 2-D cross section of the rod remains smooth, with (7 + 700) > 0. For

example, if the rod is aligned in the [111] direction, a circular cross section is the

2-D equilibrium shape for all levels of anisotropy; the corresponding 2-D surface

energy 7(0, 7r/2) is isotropic. This is a result of the special fourth-order form that

we have assumed for the surface energy in eq. (3.5); a more general expression that

includes sixth-order terms (McFadden et al. 1988),
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leads to an anisotropic 2-D surface energy 7 (0 ,
7t/2) = (1 + e6 cos 6</>) for a rod

aligned in the [111] direction, and the corresponding 2-D cross section has six-fold

symmetry.

We have considered a single model of a cubic surface energy anisotropy charac-

terized by the parameter e4 in eq. (3.5). We have obtained results for the critical

wavenumber for high-symmetry orientations of the rod over the range —1/18 <
e4 < 1/12 for which the 3-D equilibrium shape remains smooth in this model. This

is a reasonable range of values for many metallic systems and for several transparent

organics that are often used as non-faceting model systems to study solidification.

Typical values of surface energy anisotropy in such systems are on the order of a

few percent (see the tabulated values for cubic materials in Napolitano et al. in

press). Both experimental measurements (e.g., Glicksman & Singh 1989) and com-
putational techniques (e.g., Hoyt et al. 2001) have been used to obtain estimates

for surface energy anisotropy.

We have restricted our attention to anisotropies that are mild enough that no
orientations are missing on the unperturbed rod. It would be valuable to extend the

analysis to stronger anisotropies for which missing orientations do occur. This would

require explicit consideration of the Weierstrass-Erdmann corner conditions (Bolza

1961) that characterize a change in slope on the equilibrium solution. Another

approach would be to introduce regularizing terms (Gurtin 1993; Golovin et al.

1998) associated with edge energies to smooth out the corners.

We have found that surface energy anisotropy can play a significant role in

determining the stability of a rod or wire which is assumed to be isolated from

surrounding solid surfaces. It would be valuable to extend the analysis to take into

account effects of a substrate in contact with the rod. An analysis of capillary

instabilities of a thin solid film on a substrate that takes into account the effect

of isotropic surface energies on the contact line of the film has been performed by

McCallum et al. (McCallum et al. 1996). We are currently extending this work to

include the effects of surface energy anisotropy.

5. Conclusion

We have examined the linear stability of a rod or wire with a uniform cross section

given by a 2-D equilibrium shape. The analysis is based on computing the sign

of the second variation of the energy, which is examined by solving an associated

eigenvalue problem. The eigenvalues may be determined numerically or, in the limit

of small anisotropy, by an asymptotic expansion. The eigenproblem is a coupled pair

of second-order ordinary differential equations with periodic coefficients that depend

on the second derivatives of the surface energy with respect to orientation variables.

In this study the surface energy anisotropy is assumed to be sufficiently weak that

no missing orientations are present on the rod. We have included discussion of

examples with uniaxial or cubic anisotropy, which illustrate that anisotropic surface

energy plays a significant role in the stability of a rod. Both the magnitude and

sign of the anisotropy determine whether the contribution stabilizes or destabilizes

the system relative to the case of isotropic surface energy, which reproduces the

classical Rayleigh instability.
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Appendix I

Here we derive the expressions in eq. (2.23). To simplify the notation we denote the

cartesian components of the normal vector by P = (u,v, w), and write

where

T(u,v,w) = \J

u

2 + v2 + w2
7 (4>, 0 ),

tan $ = v

u
tan© =

\/li2 + v2

w

(5.1)

(5.2)

The first derivatives of T(u, v,w), evaluated in the plane w — 0, axe given by

ru (u,v,0)

r„(u,u, 0 )

r^(n,n,0)

I7 "I7*’

v u

37+ I7*’
~le,

(5.3)

(5.4)

(5.5)

where A2 = u2 + v2 .

The second derivatives of T(u, v,w) in the plane w = 0 reduce to

ruu (n,n, 0 )
= V

^3 [7 + 700] 5 (5.6)

rUt»(«,v,o) =
^3 [7 + 700] 1 (5.7)

rw«(u,«,o) = u2

^3 [7 + 700] > (5.8)

rUU) (u,u,o) = V
^2"7e<t>i (5.9)

(n, n, 0 )
= —u

~^100, (5.10)

^WW (^5 ^ 5 0) —
^ [7 + lee] (5.11)

For the expansion in eq. (2.23), the arguments are evaluated at 6 = 7r/2, and

the appropriate values for u and v correspond to P^°\ with u = (7 + l<p<p) cos 0,

v = (7 + 7^0) sin <f>, and w = 0. We therefore find that

r(F(0)
) = 7(7 + 7^), (5.12)

and

^ 0)
(</>) = Tux + rvy + Twz = 7r + 70<£ - 7ez.

The cartesian components of f^
1

) axe given by

(5.13)

Sj — / A UjUk-r,
(l)

k=

1

(5.14)
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where the second derivatives of T are given above, and Pk are the cartesian compo-

nents of the perturbed normal vector P (P given in eq. (2.5). Evaluating the sums
gives

= [7e<t>hz - M0 + l6<t>h<p

.(7 + 700)
- (7 + lee)h z z. (5.15)

Appendix II

The linear operator in eq. (2.34),

Lh — hfpfp + h (7 + 700X7 4" 7oo)hzz 700^20 \lfo<j>hz\<t> (5.1)

in the eigenproblem can be interpreted as the linearized form of the weighted mean
curvatureVs • £• To see this, note that for a shape of the form

X(<t>,z) = yr + + zz + eh((f>, z)f + 0(e2 ),

we can write (Weatherburn 1927)

Vs ^ T
*

d(t>

+ 2
dz

’

(5.2)

(5.3)

where and Tz are tangent vectors that are bi-orthogonal to the tangent vectors

dX/d(j> and dX/dz
,

~ dX
,

T<t> '

d<f>

~ 1 '

- dX n
T<t>

~dz
~ ° (5.4)

f.?l - 0 f.?± = 1lz
dcf
>~ U ’ lz dz~

L

Expanding through first order in e gives

Vs -f= [f

l

0)
•^ + fi0)

•

d^° ]

d<j) dz

(5.5)

(5.6)

+ 6

We have

/f«» . ?£L + f(0, .^ + f(1 ) .

a^
+ f(1) . +0(e2)+ 2 dz

+1
* d<f>

2 dz
j

+ ^e) -

^ = (7 + 7^)0 + e
{
V1 + /i^} + 0(e2

), (5.7)

dX_

dz
z + ehz f + 0(e2

), (5.8)
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Ta, = -6 -
(7 + 700) (7 + 700)

2
+ /i^rj + 0(e2

), (5.9)

Tz =z + 0(e), (5.10)

£ = 7f + 7^0 - 7<?i + e

We then find

^[700^z ^0] 4*
700^0

.(7 + 700) H- (7 + l»»)hz 17+ 0(e2
I5.11)

*il flf
0)

|

fm ^0>P -A
30 (7 + 700)

’ (5.12)

and

^(o) d^ 1]

^(0) [700M0 ^00 'ye<t>h<pz , ^T
* "ar +Ti ^r =

(7+7,*)
+
(TT^)- h

+^' (5 ' 13)

Combining these results gives

Vs • £

_ e
|
h [700^2],* + fi"00 760^02 + (7 + 700) (7 + 78d)hzz 1

.0 = 1 L =(

(7 + 700)
+ <2(e

2
)>

= 1 -
(7 + 700)

Lh + 0(e2
). (5.14)
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Figure 1. Schematic diagram of the 2-D equilibrium shape x = X(4>), y = Y (cfi), with

unit normal vector f((f>).

Figure 2. Schematic diagram of the spherical coordinate system (p, 9 , 4>) used for the

definition of the surface energy 7 (<f>,9).
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Figure 3. 3-D equilibrium shapes for e4 = —1/18 (left) and 64 = 1/12 (right).

Figure 4. (a) Cross sections of the unperturbed rod for the [001] case: from the inner to

the outer curve, = —0.0556, —0.0278, 0, 0.0278, 0.0556, and 0.0833. (b) The first three

eigenvalues pn versus the wavenumber k for the [001] case with £4 = 1/12.
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Figure 5. (a) Eigenvalues for n = 0 versus the rescaled wavenumber n = Rek for the [001]

case: from left to right, £4 = —0.0556, —0.0278, 0, 0.0278, 0.0556, and 0.0833. (b) The solid

curve represents the square of the value of the rescaled critical wavenumber, k2
c ,

versus £4

for the [001] case. The dashed curve shows the corresponding result from the asymptotic

expansion for small £4.

Figure 6. The orientation of the crystal axes {n'x ,n'y ,riz )
relative to the coordinate

system of the rod for the [Oil] case.
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Figure 7. (a) Cross sections of the unperturbed rod for the [Oil] case: from the inner to

the outer curve, £4 = —0.0735, —0.0422, —0.0108, 0.0206, 0.0520, and 0.0833. (b) The first

three eigenvalues versus the wavenumber k for the
[
011

]
case with £4 = —0-06.

Figure 8 . Top: the first (solid curve) and second (dashed curve) eigenmodes Hn (<p) for the

[011] case with A: = 10 and £4 = —0.06. Bottom: the function 7 + 7ee for £4 = —0.06,

exhibiting negative values near
<t>
= 7r/2 and <p = 3n/2.
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Figure 9. (a) Eigenvalues for n = 0 versus the rescaled wavenumber k = Rek for the [Oil]

case: from right to left, £4 = —0.0556, —0.0278, 0, 0.0278, 0.0556, and 0.0833. (b) The solid

curve represents the square of the critical wavenumber, k^, versus €4 for the [Oil] case.

The large-wavenumber branch has a vertical asymptote at £4 — —1/18 « —0.0556. The

dashed curve shows the corresponding result from the asymptotic expansion for small £4 .

Figure 10. The orientation of the crystal axes (n'x ,n'y ,n'z )
relative to the coordinate

system of the rod for the
[
111

]
case.
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Figure 11. (a) Schematic illustration of the perturbed cylinder for the [111] case. Two
wavelengths of a perturbation with k = 1 are shown, (b) The square of the value of the

rescaled critical wavenumber, k versus £4 for the [111] case. The corresponding result

from the asymptotic expansion for small £4 is indistinguishable from the solid curve.
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